Engineering Physics

Course Code: PHY-109	Credit Hrs: 2-1

Text and Reference Books:

- 1. Fundamentals of Physics, 10th edition by Halliday, Resnick, Walker.
- 2. Physics for Scientists and Engineers, 9th Ed by Serway and Jewet
- 3. Physics, 7th edition By Halliday, Resnick, Krane.
- 4. University Physics, 12th Edition by Hugh D.Young, Roqer A. Freedman, Lewis Ford

Course Description:

Applied Physics covers fundamental and advanced concepts in physics with practical applications. The course begins with vector analysis, mechanics, and progresses through electrostatics and magnetism, waves and oscillations and modern physics topics like black body radiation and photoelectric effect.

Students will engage in real-world problem-solving across various physical phenomena.

Course Objectives:

The main objectives of this course are

- a. Understand and apply the concepts of mechanics
- b. Understand and apply the concepts of electrostatics and magnetostatics
- c. Validate the theoretical concepts through relevant lab experiments

Course Outline:

1. Topics covered in the Course and Level of Coverage

1. Review of vectors, ordinary differentiation of vectors,	4 hrs
gradient of scalar field, divergence and curl of vector field	
with applications	
2. Center of gravity, centroid, moment of inertia	2 hrs
3. Simple harmonic oscillator, energy in simple harmonic	4 hrs
oscillator, damped harmonic oscillator, forced harmonic	
oscillator, resonance	
4. Types of waves, superposition principle, wave speed on a	6 hrs
stretched string, wave equation, energy and power of a	
wave	
5. Electrostatics, Coulomb's law, electric field due to discrete	2 hrs
charges	
6. Electric field due to continuous charge distribution	2 hrs
7. Electric flux, Gauss' law	2 hrs
8. Magnetic field due to circular current loop and solenoid,	4 hrs
magnetic dipole, Ampere's law, Lorentz force, Hall effect	
9. Semiconductor physics, energy levels in a semiconductor,	4 hrs
hole concept, intrinsic and extrinsic regions, P-N junction,	
transistors	
10. Modern physics, Plank's explanation of black body	2 hrs
radiation, photoelectric effect	

Assessments:

Quizzes, Assignments, Mid Exam, Final Exam

Practical Work

Experiments related to concepts learned in theory classes will be conducted.